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Abstract 

Theoretical prejudice and inflationary models of the very early Universe strongly 

favor the flat, Einstein-deSitter model of the Universe. At present the observa- 

tional data conflict with this prejudice. This conflict can be resolved by consider- 

ing flat models of the Universe which possess a smooth component of energy den- 

sity. We study in detail the kinematics of such models, where the smooth com- 

ponent is relativistic particles, a cosmological term, a network of light strings, or 

fast-moving,.light strings. We also discuss the observational tests which can be 

used to discriminate between these models. These tests include the magnitude- 

redshift, lookback time-redshift, angular size-redshift, and comoving volume- 

redshift diagrams and the growth of density fluctuations. 
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1. Introduction 

One of ,the most fundamental questions we can ask about the Universe is, 

how much matter is there in it? Luminous matter contributes but a small frac- 

tion of the critical density: 0 LLiM N 0.01 (see, e.g., Faber and Gallagher 1979). 

The flat rotation curves of galaxies (Rubin, Ford, and Thonnard 19781980; 

Bosma 198la,b; Rubin 1983) and the virial mass determinations of clusters of 

galaxies (Faber and Gallagher 1979) indicate that the dominant component of the 

mass density in the Universe is dark and that the dark component is ubiquitous 

and contributes ~~~~~ > 0.1. The total amount of dark matter and its composi- 

tion are at present still unknown. (For a recent review of dark matter in the 

Universe, see Kormendy and Knapp 1986.) Primordial nucleosynthesis constrains 

the fraction of critical density contributed by baryons to be fIb(0.35h? (Yang 

etal. 1984) where as usual the present value of the Hubble parameter is written 

as, Ha=100 h km ~~Mpc-r. It follows that if fI~0~20.2, then the dark com- 

ponent must be non-baryonic. Modern particle physics theories have provided an 

ample list of candidate particles whose relic abundances would allow them to 

account for the dark matter (for a recent discussion, see, Turner 1986). 

Essentially all measurements of the amount of matter that clusters on scales 

5 lo-30Mpc strongly suggest that fl raze N 0.1-0.3 (see, e.g., Faber and Gal- 

lagher 197Q;,Press and Davis 1982; Audouze and Tran Thanh Van 1983; Davis 

and Peebles 1983). We must emphasize that such measurements are insensitive 

to a component(s) which is smoothly distributed on these scales. While in princi- 

ple the deceleration parameter is sensitive to the total amount of matter in the 

Universe (smooth and clumped), attempts to determine it unambiguously have 

thus far been unsuccessful (see, e.g., Gunn and Oke 1975; Kristian, Sandage, and 

Westphal 1978; Huchra 1986; Sandage and Tammann 1986). It goes without say- 

ing that the amount, nature, and distribution of dark matter in the Universe are 
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among the most pressing questions facing cosmologists today. 

Theory is not without its opinions. Because of the inherent instability of an 

n#t Universe (Dicke and Peebles 1979) theoretical prejudice strongly favors the 

flat, Einstein-deSitter model (D-i). Indeed, the inflationary Universe scenario 

proposed by Guth (1981) (and moditied by Linde 1982 and Albrecht and 

Steinhardt 1982) provides the means of guaranteeing that the Universe is very 

flat today, regardless of its initial curvature. 

If, as theoretical prejudice favors, the Universe is flat, then cosmologists are 

faced with a dilemma: either the measurements of the amount of matter which 

clumps on scales s lo-3OMpc are wrong, or they are misleading, as they suggest 

that R N 0.1-0.3. Theoretical prejudice and cosmological observations can be 

reconciled if the bulk of the matter in the Universe (D, = I-RI,-as IV 0.7-0.9) 

resides in a component that is smoothly distributed on scales < lo-3OMpc. A 

number of possibilities, motivated by early Universe physics, have been suggested 

for the hypothetical smooth component. They include: (i) Relativistic or very 

fast-moving (v 2 lo-* c) particles produced by the recent decay of unstable, relic 

particles, which, by virtue of their high speeds, cannot clump (Dicus, Kolb, and 

Teplitz 1977; Turner, Steigman, and Krauss 1984; Gelmini, Schramm, and Vallee 

1984; Olive, Seckel, and Vishniac 1985); (ii) A relic cosmological term (which 

corresponds to a uniform energy density throughout the Universe) (Peebles 1984; 

Turner, Ste<gman, and Krauss 1984); (iii) A network of light strings, or very 

fast-moving light strings (Vilenkin 1984). (These light strings are not to be con- 

fused with the more familiar heavy cosmic strings which can induce significant 

density perturbations in the matter. For a recent review of cosmic strings, both 

heavy and light, see Vilenkin (1985)) ; (iv) Failed galaxies, by which one means 

galaxies that, because of their faintness, have not been detected, and are more 

smoothly-distributed than bright galaxies (Kaiser 1986; Bardeen, Bond, Kaiser, 
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and Szalay 1.9SS). 

For possibilities (i-iii) the bulk of the mass density in the Universe would 

reside in a component whose density does not decrease like that of non- 

reIat,ivistic matter (i.e., different from p cx C3, where a = the Robertson-Walker 

cosmic scale factor). Therefore, the kinematics of these models will be very 

different from those of the conventional matter-dominated, Einstein-deSitter 

model. These differences could, in principle, be exploited to discriminate between 

(and hopefully rule out) some of the myriad of models. 

The purpose of our paper is to explore this possibility. We calculate the 

evolution of the cosmic scale factor in these exotic Einstein-deSitter models and 

consider the classical cosmological tests (magnitud*redshift, angleredshift, look- 

back timeredshift, and comoving volumeredshift diagrams), as well as growth of 

density perturbations in the clumped component. Of course there are other 

observational probes we have not considered here. Among them are the 

predicted anisotropies in the cosmic microwave background (see, e.g., Turner 

1985a; Vittorio and Silk 1985; Kolb, Olive, and Vittorio 1986), and the predicted 

largescale peculiar velocity fields (Kaiser 1983; Vittorio and Silk 1985; Vittorio 

and Turner lQ86), which result from the primordial density perturbations neces- 

sary for structure formation. 

II. Notation and the Models 

The evolution of the scale factor, a, in a Friedmann-Robertson-Walker 

cosmology is governed by the Friedmann equation, 

(1) 

where p is the total energy density, k/2 is the curvature contribution, and A is 

the cosmological term. For the most general case p is given by a sum of all possi- 
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ble contributions: 

P=PNR+PR+PF~~PNE~~P~PRx~ (2) 

where NR represents stable non-relativistic particles which can clump; R, rela- 

tivistic particles; FS, light, fast-moving, non-intercommuting strings; NET, a net- 

work of light strings; X, a decaying massive, NR particle species; and RX, the 

relativistic particles produced by X decays. Throughout we will specify the con- 

tribution of each term to the right hand side of equation (1) by its fraction of the 

critical density (pclir=31f;j/8nG N 1.88h2X10-2Qgcm~3): 

8SGpi 
n;=- 

3% 
i=NR,R,RX,X,FS,NET 

i-j&L. 
3I.g’ 

+-IL 
J%zi’ 

(3b) 

(3c) 

By definition zfl,=l. Omitting, for now, the possibility of decaying particles, 
I 

the Friedmann equation can be rewritten: 

(4) 

where subscript ‘0’ denotes the present epoch. 

The component in non-relativistic particles deserves further comment. Its 

mass density varies as h3, not only for normal baryonic material but also for the 

more exotic cold and hot dark matter candidates which are non-relativistic 

today. For our purposes all NR particles which can undergo clustering are 

lumped into R ’ ,AJR. It is this component to which the observations are sensitive, 

and determine to be It, N- r&,ae N- 0.2kO.l. 

Rather than considering the most general model we will consider two com- 

ponent models with NR particles and a smooth component. As two simple 



limiting models we will consider the cases R,=l, where 

H a -312 
-=- ( 

I I Ho a, 
and RR=I, for which 

(54 

(5b) 

The latter model for many purposes is a very simple approximation to the more 

realistic case where the relativistic particles are produced by decaying relics. For 

the remaining models we choose ~?NR in the range 0.1-0.3 and a smooth com- 

ponent with Rspl-R,. If this smooth component is a relic cosmological term 

(Peebles 1984; Turner, Steigman, and Krauss 1984) 

and equation (4) simplifies to 

#+*+q -j -I’“, 
For fast-moving strings, pus Q l/(f u(t)) an so if the smooth component is d 

fast-moving cosmic strings (Vilenkin 1984; also see Turner 1985b), the evolution 

of the scale factor is governed by 

The solutionof equation (8) is discussed in the Appendix. 

A third possibility for the smooth component is relativistic particles pro- 

duced by the decay of an unstable massive relic particle species, X This case is 

discussed in detail by.Turner (1985~). We will not repeat his calculations here 

but will simply present his results and compare them to the other models. Fol- 

lowing Turner (1985~) we define the ratio of the mass density in unstable parti- 

cles (before decay) to that in the stable NR component to be pl=p,y/pNP p’ is 



related to the redshift of decay (l+z~), fl,v~, and RR by ~‘=(~,/~,)(l+z,). 

The small scale isotropy of the microwave background restricts l+zD to be less 

than or of order 10 (Turner 1985a; Vittorio and Silk 1985; Kolb, Olive, and Vit- 

torio 1986) and with R,~=0.2&0.1, n,/R,=2.3-9, so that the range of interest 

for L?’ is 3-100. 

Finally, for purposes of comparison, we will consider non-Eat models 

(k<O). For these models equation (4) reduces to 

Since pNET Q aw2, this equation (with 0, replaced by fI,,) also describes models 

in which the smooth component is a string network. Equations (5a), (Sb), (i’), 

(8), (9) and a similar equation for the decaying particle model can be solved to 

yield the :volution of the scale factor, a(f), for each model.. All of the kinematic 

discriminators we shall discuss depend solely upon the evolution of a(f), and so 

we show the evolution of the scale factor, a(t), in Figure 1, for the various 

models. 

The scale factor may be expressed as a power series expanded about the 

present epoch (see, e.g., Weinberg 1972): 

a(f)=a(fo) l+Ho(~-~)-~pb~(t-~o)2+ 
I 

(10) 

where the deceleration parameter qaz-R( to)R( to)/@ 6). Using the Einstein 

equations, this parameter can be written as 

~0=~@+3fhfYs~ (11) 
where ~~~~~~~~~~ Ito is the ratio of the pressure in the smooth component to 

the energy density in the smooth component and has the values: 

-1 A#0 
-t/3 k<O, FS, NET 

‘-iSM= 0 NR 
113 R 

(1‘4 
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The parameter pa serves to parameterize the recent behavior of the scale factor. 

Most of the kinematical differences between the models can be qualitatively 

understood in terms of the relative pressure in the smooth component (i.e., rsM). 

III. Kinematics 

In sections (ma) - (UIg), possible observational means of distinguishing 

between cosmological models will be considered. Unfortunately none of the 

observations have yet been refined to the extent that we can make definitive 

statements concerning the viability of any of the models. However, with the 

advent of the Space Telescope, a new generation of large, ground-based tele- 

scopes, and other new instruments (such as SIRTF), many of the observations, on 

which the various discriminators depend, may be made in the foreseeable future. 

Throughout this section we assume that the reader is familiar with the basic 

kinematics of the Friedmann-Robertson-Walker models. For more details and 

the derivation of the standard results we refer the reader to Weinberg (1972) or 

another similar text on cosmology 

A. Age-redshift diagram 

The general expression for the age of the Universe is: 

44 
t= I da/i 

H,+=“‘~~a/[a(H/H,,~. 

(134 

(13b) 

This integral can be evaluated analytically for the pure matter (n,=l), pure 

radiation (n,=l), cosmological constant dominated (A#O), string network, and 

curvature dominated (k<O) models. The resulting expressions are: 

( 144 

(14b) 
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H,,t=-kn &z=F+4w+4”+RNR 
3Rif2 

(*zo) (14c) 

(k<O / NET), (14d) 

where 

Ilr(l+z)=cosh-’ 
I 

2(;;y (1+z)-‘+J . (144 

Expression (13b) has been evaluated numerically for the decaying particle case 

(Turner 1985c), and for the fast-moving string case (Turner 1985b). Details for 

the fast-moving string dominated model are discussed in the Appendix. 

The lookback time, H,,( 4-t)) is probably the most useful age related discrim- 

inator. A plot of Iookback time vs. redshift, comparing all the models (with 

nNR==0.25 in those models with a smooth component) is shown in Figure 2. At a 

given redshift, the cosmological constant dominated model is the oldest; the 

radiation-dominated, the youngest. The use of Figure 2 in discriminating 

between models relies upon comparing a physical timescale to a redshift interval. 

Examples of physical timescales are the age of a galaxy at redshift z=l, or the 

theoretically determined time required for the change in color observed between 

two galaxies of the same type that can be identified at two different redshifts. 

The redshift interval can be expressed, for a given model, as a fraction of the 

total lookback time (the present age), with the use of Figure 2. The present age 

of the Universe can be obtained by dividing the timescale by the fraction of the 

total lookback time for the model being considered. If this age does not agree, 

within errors, with ages determined by independent means, such as the ages of 

globular clusters or nucleocosmochronolog (Philip, Davis, and Hayes 1981; Sand- 

age 1982; Schramm 1983; Iben 1984), the model can be ruled out. 



- lo- 

B. Present age 

The points at which the curves in Figure 2 cross the vertical axis on the 

right side of the plot give the present ages of the Universe for the various models. 

This age itself can also be used as a discriminator. The present age is simply 

ff,,t(-=O), derived from equations (14a)-(14d). For the case of pure matter, equa- 

tion (14a) yields the familiar result H&=2/3, and for pure radiation the present 

age is given, by equation (14b), as H&=1/2. Ages of the Universe for the vari- 

ous models with a smooth component are given in Table 1. 

The large range of values in Table 1 implies that the age of the models is, in 

principle. a way of distinguishing between them. Radiation-dominated models 

tend to be very youthful (H&=0.5-0.6), while A#0 models tend to be rather old 

(H&,>2/3). Unfortunately, there is presently no definitive determination of I&t,,. 

Ha is generally believed to be in the range 49-100 km sm’hfpce’ = 

(25Gyr))-(10Gyr))’ (Sandage and Tammann 1982; Aaronson and Mould 1983; 

Buta and devaucouleurs 1983; Sandage and Tammann 1984; Arnett, Branch, 

Wheeler 1985; Huchra 1986; Sandage and Tammann 1986). The age of the 

Universe has been determined by a variety of methods including dating of globu- 

lar clusters and nucleocosmochronolog. These determinations suggest a value of 

to in the range 12-18 Gyr (Philip, Davis, and Hayes 1981; Sandage 1982; 

Schramm 1983; Iben 1984). Taking these ranges for Ho and to, Hot0 is con- 

strained only to the range: 0.48<&~<1.8. If H& were shown to be 20.6 the 

decaying particle models would be ruled out. If Hoto were shown to be 21 only 

t,he A#0 models would be viable. On the other hand, if Hr, were determined to 

be 50km se’Mpc-‘, then H&<O.72 and a cosmological constant dominated model 

would be untenable. 
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C. Proper distance 

The proper distance to an object of redshift z is needed to calculate the 

luminosity distance, angle distance, and proper volume of a comoving volume ele 

ment in sections. The microwave temperature fluctuations induced by density 

perturbations on a given angular scale are also related to the proper distance of 

an object of redshift z. 

The proper distance to an object of redshift z is the present value of the 

scale factor times the coordinate distance covered by a photon from redshift .z 

until today: 

4(i)=4ialt~~~z,d~ ldf )=~ll,+~-~~~dai[lHiH)~]. (15) 

The analytic solutions for the pure matter, pure radiation and curvature dom- 

inated (or string network) models are: 

(164 

f&d,(z)=& PR=1), 06b) 

Ho4=,/~[WO] WO / NET), (16~) 

where q(l+r) is defined‘in (14e). For the other three models, the integral must 

be evaluated numerically. 

The angular size of an object is inversely proportional to the proper dis- 

tance, Hod&). For an object whose proper size scales with the expansion, 

/(r)=le/(l+z), e.g., the wavelength of a given Fourier mode of the density 

fluctuations (in the linear regime), the angular size 8 is given by 

~=Hok,IHo4(4 (17) 
The microwave temperature fluctuations on a given angular scale are related to 

the density contrast at last scattering, e1500, on the length scale corresponding 

to this angle (see, e.g., Vittorio and Silk 1984 or Bond and Efstathiou 1984). 
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Values of &4-,( 1500) for the six models are given in Table 2. 

D. Luminosity distance 

The luminosity distance to an object is defined as 

w 
=r,4lo)(l+4 (15) 

where I is its apparent luminosity, L is its absolute luminosity, and r, is the coor- 

dinate distance to the object. For flat models, d,=a(.$)r,, and thus the luminos- 

ity distance becomes 

H,,dL=H&( l+z). 

For curvaturedominated models 
(16) 

&k=,/zsinh[ H,$[ ,-k]-“2] P+4 k-0. (17) 

From equations (IS), (19) and (20) the following analytic expressions for the 

luminosity distance follow: 

HodL=2 [ l-(l+~)-‘/~ (l+z) 3 VNR=~), (214 

HodL=z u?Fl), @lb) 

HsdL=~~sinh[Ul(l)-4(l+r)l(l+z) (k-W, @lc) 

44= ,/~[WkW+4] (I+4 (N-V. CW 

For all the other models, the proper distance and luminosity distanceredshift 

relationships must be calculated numerically. Figure 3 is a plot of the luminosity 

distanceredshift relationship, the classical Hubble diagram, for all models. 

To date, much effort has been focused on the determination of Q,, which 

appears in the power series expansion for d,: 

H,dL=r++( I-90) g+ . ’ 

In order to use this diagram to distinguish between models, it is necessary to 

have a sample of objects with known absolute magnitudes (standard candles) out 
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to reasonably high redshifts. Often the EM-ranked galaxies in clusters are used 

as standard candles. The observed magnitude must be corrected for many effects 

which are not well determined, such as evolution and statistical selection effects. 

At present, the errprs in the corrections are of a magnitude such that distinguish- 

ing between models, with this diagram, is not possible. 

E. Angle distance 

The angle distance, dA, is the ratio of the diameter of the source, D 

(assumed here to be independent of redshift), to its angular diameter 

fkD/a(f,)r,: 

dA=“(tl)r,=~f~)rl(l+z)-‘. 

In terms of the proper distance this becomes 
(23) 

H,d,=H,d&+t)-’ (k=O), (244 

H,d,4=,/xsinh[ H&f l-ANR) -l’) (1+4-’ (W-9. Wb) 

Comparing (18) and (23), we see that the angle distance and the luminosity dis- 

tance are not independent cosmological probes. For example, when the quantities 

I and 0 are combined to obtain the surface brightness, I/@-(~+z)-~, all depen- 

dences on the cosmological model cancel. Thus the surface brightness, in princi- 

ple, provides a means of isolating evolutionary effects. This could be very impor- 

tant, since, in an observational angle distance diagram, evolutionary and cosmo- 

logical effects are intermixed. 

The expressions fur angle distance in the simplest models follow from equa- 

tion (24): 

I- -3 
H,d,=2b-(l+r)-‘/*](l+z)-’ (~NR=~L (254 

Hod,= ’ 
(1+r)2 

(n,=l), 

Hod,=~~sinh[~(l)-~(l+I)l(l+r)-’ (k-o% 

Wb) 

(25~) 
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Hodx=,/~[*il)-‘@(l+4j (l++ (NET). (25d) 

The theoretical angle distance vs. redshift curves are shown in Figure 4. lit low 

redshifts, the angular diameter ( -lIdA) of an object decreases with increasing 

redshift, aa expectkd. It reaches a minimum at a redshift 2=2 then rises with 

increasing redshift. The increase in angular diameter with redshift can be under- 

stood because the light we observe today from an object at higher redshift was 

emitted when the object was closer to us. 

With the recent advent of the use of two-dimensional digital devices, it has 

become possible to measure angular diameters for many galaxies. When doing so, 

It is essential to define the angular diameter in terms of metric rather than iso- 

photal size. The metric size is deEned in terms of a physical part of the galaxy 

image that can be conveniently identified in a plot of some physical quantity vs. 

6’. An example of such a quantity is the radius (or angle 0) at which the quantity 

d In L(r)/d In r has some chosen value. (For further discussion, see, Djorgovski 

and Spinrad 1981 or Crawford 1981). 

The divergence of the angle distanceredshift curves at large redshifts sug- 

gests that having a higher redshift sample would allow great cosmological lever- 

age. Unfortunately, since objects at higher redshifts are fainter, measurements 

have lower precision, and therefore objects at higher redshifts do not necessarily 

provide better cosmological leverage. Kron (1985) estimates that the peak of the 

cosmological leverage vs. redshift curve occurs for z 2: 0.4 for a measurement of a 

quantity that combines counts and angle distance. 

F. Comoving volume element 

The number of galaxies in a volume element, drdR, is just the number den- 

sity of galaxies (per comoving volume) times the comoving volume, dVc, of that 

volume element. In Bat models, the comoving volume dVo (which for simplicity 
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we take to be equal to the proper volume today) is just 

dV,=-f( 4)(“)3/3) drdn=K’(r)d$z)ddi2 

In models with a curvature term, 

(261 

dv,=K’(r)~(z)(l+z)-~dZdn. (27) 
In the absence of evolution the number of galaxies per comoving volume element 

is independent of the redshift, z, and therefore the number of galaxies in drdn is 

simply proportional to dVo/dzdil. Analytic expressions for the comoving volume 

element follow from equation (16) and the Friedmann equation: 

[ 
(l+r)p*-( 1+zy z&f 1 (~~NR=Q (284 

db 1 -= 
dam (1-r~)~ G3 tnR=l), (28b) 

dl/, 1 -= 
dzdfl 1-nNR 

sinh* q(l)-q(l+z) 
[ 3 

(k<O) (28~) 

dV,- 1 -= 
dzdfl l-ONR 

[u(l)-9(1+r)p 

X ~~~(l+*)~+(l-ft~~)(l+*)j~~‘~&j~ (NET’. (28d) 

For the h#O, fast-moving string, and decaying particle models, dV,/dz& must 

be obtained numerically. 

dVo/dzdi2 is shown in Figure 5. From this plot we see that in a given red- 

shift interval we would count the most galaxies for a cosmological constant dom- 

inated model and the least for a radiation-dominated model. Unfortunately faint 

galaxy surveys are magnitude, rather than redshift, limited samples. Models with 

a larger comoving volume element also have a smaller luminosity distance. These 

two effects nearly balance, so that counts in a magnitude limited sample are not 

as useful in distinguishing between models as Figure 5 seems to suggest. Counts 

in a redshift limited sample, however, could be put to good use in distinguishing 

between the various Eat models. 
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Recently, Loh and Spillar (1986a,b) have attempted such a count-redshift 

test, by determining redshifts and fluxes of 1000 field galaxies. Their three data 

points (at ,=0.25, 0.5, 0.75) are displayed on our Figure 5. Loh (1986) interprets 

these results to CQnstrain 0.8<fl,- <l 5 and -0.5<R&0.2. We see that the 

Loh and Spillar data points could only marginally allow flat FS or PI=10 decay- 

ing particle models. The other 6at models, with BNR=O.25, are not compatible 

with the data points. These results are indicative of the significant cosmological 

leverage that is provided by a comoving volume-redshift test. 

F. Growth of density fluctuations 

A final kinematical consideration is the growth of the density fluctuations 

which lead to the structure observed in the Universe. The smaller the growth 

since decoupling (when all the models considered are dominated by the NR com- 

ponent) the larger the initial perturbations required at decoupling. Measurements 

of the smoothness of the cosmic background radiation can be used to place an 

upper limit on the size of density perturbations at decoupling, and thus a lower 

limit to growth since decoupling (Bond and Efstathiou 1984; Vittorio and Silk 

1984; Turner 1985a; Vittorio and Silk 1985; Kolb, Olive, and Vittorio 1986). 

The growth of linear density perturbations in component i, 6;=6pi/pi, of a 

multi-component fluid, is governed by the equation 

i,++,+ I $4&q 6,=0, I (W 

where q=2nc/X is the comoving wavenumber of the perturbation and 

~AdPJdPJ ‘I2 is the sound speed in component i. (See Peebles 1989 for a more 

complete discussion of equation (29).) The pressure term, t&?/a”, can be 

neglected when the wavenumber, q, is much less than the Jeans wavenumber. 

With the assumption that the smooth component does not clump, so that 6, is 
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always 0, equation (29) takes the following form for the non-relativistic com- 

ponent (for q<<qj): 

.d,,+2&+-tN,&=o. (30) 

When considering the case of pure matter, Cl ~pl, equation (30) yields the fami- 

liar result that 6~~0 tsi3, or 6, a a. The growth of perturbations since decou- 

pling in such a model is just l+z&, N 1500. 

In the case that RR>>fINR, density perturbations in the NR component do 

not grow (unless they had some initial velocity ii, in which case 6, (Y ln a), 

For h#O, the decaying particle, and the string-dominated models, we have solved 

equation (30) numerically. The solution for fast-moving string dominated models 

is discussed in more detail in the Appendix. An analytic solution is possible for 

k<O (or string network) models. The growth of 6, since a redshift z is given by 

~[-310sinhlyo+(cosh~o-l)(cosh~o+5)]. 
CDS 0 

(31) 

where S’ is evaluated at the present (z=O). 

The evolution of 6, since decoupling (when all the models were dominated 

by the NR component) is shown in Figure 6, and the total growth since decou- 

pling for fl,=O.25 is displayed in Figure 7. The cases of decaying particles and 

light strings are discussed in more detail by Turner (1985b,c). Fry (1985) has 

also considered the growth of density perturbations in some of the smooth com- 

ponent models discussed here. 

IV. Summary 

As we have seen, the evolution of the cosmic scale factor u(l) in these exotic 

flat models with a smooth component is very different from that in an R=l 

matter-dominated model, which in turn means that the kinematics of these 

models are quite different. The largest deviations from the canonical matter- 
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dominated Einstein-deSitter models occurs in the A#0 and decaying particle 

models. 

Linear density perturbations grow more slowly (as a function of a(t)) in the ., 

smooth component models than in a matter-dominated Bat model. In this 

regard, the A#0 model comes closest to the matter-dominated model and the 

growth of perturbations is most inhibited in the model with fast-moving strings. 

Slower growth of density perturbations means that larger perturbations are 

required early on (say at decoupling) in order to achieve the same degree of inho- 

mogeneity today. Larger density perturbations at decoupling imply larger 

predicted anisotropies in the microwave background, which places severe restric- 

tions on the models. 

The most powerful discriminator may be the present age of the model. The 

dimensionless ratio Ff,re varies from around 0.55 for the decaying particle models, 

to 2/3 for the canonical flat model, to greater than unity for some of the A#0 

models. A value of H,,f&O.B essentially rules out decaying particle models, while 

a value of Hoto~l.O forces us to models with A#O. The lookback time vs. red- 

shift also appears to be a very promising test. 

We will conclude by contrasting the present situation to that 25 years ago. 

A quarter of a century ago Sandage (1961) in his paper “The Ability of the 200- 

inch Telescope To Discriminate Between Selected World Models”, reviewed many 

of the tests discussed here. Although in the intervening years a large amount. of 

effort has been devoted to cosmological tests, our conclusions are not qualitatively 

dissimilar to his. 

Sandage (1961) (hose to review only models where A#0 since “the large 

variety of possible world models makes a final decision between the models 

impossible because there are more parameters in the equations than can be deter- 

mined observationally”. Today, with the numerous smooth component 
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candidates, this problem is accentuated. In addition, we can also have a range of 

values for RNR, which leads to overlap of the curves for the various ftat models. 

Sandage (1961) concluded that “it appears possible to find po from the 

magnituderedshift relation”, and cites 9+fl/2 as a most probable value. 

Most recent efforts have focused on this approach, but unfortunately pe has not 

been unambiguously determined. We see, in Figure 3, that the differences 

between the various flat models are small, and since the uncertainties in correc- 

tions are of a magnitude comparable to these differences, it seems that alternative 

approaches should also be considered. 

One such approach (Lob and Spillar 1986a,b; Loh 1986) is the comoving 

volume element vs. redshift test. Sandage (1961), with only magnitude limited 

counts available, was forced to conclude that “the predicted differences between 

the models are too small compared with the known fluctuations of the distribu- 

tion.” Redshift samples that are now accessible (Koo 1985; Loh and’ Spillar 

1986a) provide much more cosmological leverage. In fact, in Figure 5, the 

differences between the A#0 model and the decaying particle models can be quite 

substantial at redshifts of order a few. 

With the realization of the importance of defining angular diameters in 

terms of their metric size, Sandage (1961) concluded that “a test for ~a seems to 

be possible with the 2004nch, and the test will be difficult and perhaps margi- 

nal”. Today, we draw basically the same conclusion, although with the use of 

two-dimensional digital devices, perhaps we can be somewhat more optimistic. 

Finally, Sandage (1961) concluded that “a decision between the possible 

classes of models cannot be made until observations are pushed near to, or 

perhaps beyond, the telescopic limit of the 200-inch”. In 1986, our models and 

“telescopic limits” are different, but our conclusion is much the same: With the 

advent of generation of space-based observatories such as the Hubble Space 
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Telescope and SIRTF, and larger, better-instrumented ground-based facilities it 

may be possible to discriminate between the different flat models. 
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Appendix 

Here we consider the Rat (k=O) model with St,=O.l-0.3 where the smooth 

component is in fast-moving strings. This possibility was suggested by Vilenkin 

(1984). The crucial aspect of t,hese strings is the fact that their mass density of 

strings scales as 

Here we will solve for the evolution of the scale factor a(t), the growth of density 

fluctuations, and the proper distance. 

The density of the two components, non-relativistic particles (NR) and light, 

fast-moving strings (FS), evolve as 

I ,I 
-3 

PNR=PNRi + t 

where subscript ‘2 denotes some unspecifies initial epoch, which we take to be 

sufficiently early so that pNR>>pF9 The Friedmann equation takes the form 

g=[ :I z’+J~.+pNR). 
With the following definitions: 

ld 1; ’ 

b~~=bi ( a/aJ2/z, 

da a’ y, 

the Friedmann equation can be written as 

(A3) 

644) 

where we have used the fact that 
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Beginning at xi=1 and normalizing a(t) SO that Qi=‘(‘;)=‘> equation (A4) 

becomes 

a-3+bia-‘z-’ 1 
For our numerical calculation we choose the initial epoch such that 

b,= pFsi -=O.Ol<<l. 
’ PNRi 

w 

Early on, the second term on the right hand side of equation (AS) is small and 

(I a 2”i3 as expected in a matter-dominated model. When b>>l, sot and 

PF.ea m2 as in a curvature-dominated model. 

Although we are interested in a variety of values for ~NR, equation (AS) 

need only be solved once. Beginning with the arbitrary initial conditions, z,cl 

and a;=l. the present epoch is identified by finding the time at which the value 

of b corresponds to its value (b,)En&nN,& l-n&/n,) today. 

Equation (25), which gives the growth of density perturbations in the NFt 

component, now takes the form 

bNFO. (A7) 

Equation (A7) is solved simultaneously with equation (AS) to determine the 

growth of density fluctuations. Early on, the model is strongly matter- 

dominated, a a znj3, and pFs Q z- . 25 As expected, the growing mode of density 

fluctuations evolves as 6 Q 8s. ‘When the model becomes string-dominated, 

a Q 2, pFs Q zm2, and p,erturbations cease growing. The evolution of 8, is shown 

in Figure 6, and the growth of a perturbation since decoupling is shown in Figure 

7, 

The proper distance de(z) is needed to calculate the various kinematic quan- 
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t.ities such as the luminosity distance, the angle distance, and the comoving 

volume element. It is obtained in a straightforward way by integrating equation 

(12). 
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Table 1 - The value of Hot,, 
I 

nNR decaying A#0 FS k < O RNR=l n,=l 

particles 

/Cl=30 NET 

0.1 0.540 1.28 0.842 0.898 

0.15 0.525 1.16 0.816 0.870 

0.2 0.524 1.08 0.796 0.846 0.667 0.5 

0.25 0.526 1.01 0.779 0.826 

0.3 0.530 0.96 0.765 0.809 
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1 Table 2 -~ Proper distance to the last scattering surface Ho&(1500) [ 

nNR decaying A#0 FS k<O n,=l f-l)& 

particles 

p!=30 NET 

0.1 1.24 4.95 3.28 2.32 

0.15 1.17 4.23 3.02 2.59 

0.2 1.15 3.78 2.84 2.78 1.95 I .oo 

0.25 1.14 3.46 2.70 2.94 

0.3 1.15 3.21 2.60 3.07 
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Figure Captions 

Figure 1: 

The evolution of the scale factor a(t) for the various models (with 

fl,=O.25 in those models with a smooth component). “30” denotes the 

decaying particle model with 8’=30; R, 0~1; FS, light, fast-moving, 

non-intercommuting strings; and NET, a network of light strings. The 

bold line represents the model with n,=l. 

Figure 2: 

The lookback time-redshift relationship. The bold line represents the 

model with RNpl. “30” and “10” are values of p’ in decaying particles 

models. Labels are the same as in Figure 1, and 02,=0.25. In general 

the ordering of the curves is determined by the relative pressure in the 

smooth component, 7sM, going from negative pressure (A#O) to zero pres- 

sure (fI,=l) to positive pressure (0~1). 

Figure 3: 

Luminosity distance-redshift relationship. 0~~0.25, and labels are 

the same as in Figure 2. 

Figure 4: 

Angle distance-redshift relationship. fl~n=O.25, and labels are the 

same as in Figure 2. 

Figure 5: 

Comoving volume element-redshift relationship. R,.~~=0.25 and 

labels are the same as in Figure 2. The points with error bars are the Loh 

and Spillar (1986b) data points. 
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Figure 6: 

Evolution of 6, since decoupling. The various symbols mark the 

values of a/u,, for which flab has the indicated values. Labels are the 

same as in Figure 2. 

Figure 7: 

Total growth of linear density perturbations since decoupling for 

fI,=O.25. Labels are the same as in Figure 2, with the addition that 

“100” refers to a decaying particle model with p’=lOO. 
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